A block symmetric Gauss–Seidel decomposition theorem for convex composite quadratic programming and its applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations Qx = b, where x = (x1, . . . , xs) is partitioned into s blocks, with s ≥ 2, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an extra proximal term of the form 12‖x−x ‖T , where T is a symmetric positive semidef...

متن کامل

A simplicial decomposition framework for large scale convex quadratic programming

In this paper, we analyze in depth a simplicial decomposition like algorithmic framework for large scale convex quadratic programming. In particular, we first propose two tailored strategies for handling the master problem. Then, we describe a few techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments on both real portfolio optimization and gen...

متن کامل

Construction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications

Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

A Limit Theorem for Quadratic Forms and Its Applications

We consider quadratic forms of martingale differences and establish a central limit theorem under mild and easily verifiable conditions+ By approximating Fourier transforms of stationary processes by martingales, our central limit theorem is applied to the smoothed periodogram estimate of spectral density functions+ Our results go beyond earlier ones by allowing a variety of nonlinear time seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2018

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-018-1247-7